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Retrograde waves in the cochlea are important because they provide information about
cochlear mechanics that may be measured in the external ear canal as otoacoustic emis-
sions. By extending traditional wave-variable methods, an explicit equation is derived for
the forward-traveling wave in a one-dimensional cochlear model that is equivalent to the

WKB approximation. The corresponding equation for the retrograde waves requires no
additional approximation and provides a simple characterization of cochlear reflectance.
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1. Introduction

The importance of retrograde waves was not fully appreciated until the discovery

of sounds measured in the ear canal that originate within the cochlea [1]. These

otoacoustic emissions (OAE) provide a noninvasive means to acquire information

about cochlear function.

Coherent reflection theory is the accepted explanation for stimulus-frequency

OAEs (SFOAE) [2]. Zweig and Shera use the WKB approximation [3,4] to obtain

a solution for the fluid pressure in a cochlear transmission line. Their coherent

reflection theory provides a theoretical explanation for observed amplitude and

phase characteristics of SFOAEs.

In this paper, wave-variable methods that have traditionally been applied to

uniform transmission lines are extended to obtain the WKB formula described by

[4]. This formulation leads to a simple equation for reflectance looking into the

cochlea from the base.
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2. Cochlear model

The equation for a one-dimensional long-wave transmission-line model of the

cochlea[3] is

d

dx

[
P (x, f)

U(x, f)

]
= −

[
0 Zs(x, s)

Yb(x, s) 0

] [
P (x, f)

U(x, f)

]
, (1)

where P (x, f) is the scala fluid pressure, U(x, f) is the longitudinal volume velocity

of the scala fluid, Zs(x, s) is the scala impedance (per unit length) and Yb(x, s) is the

BM admittance (per unit length). The Laplace frequency s is used for expressions

of frequency, such as impedances, that are causal functions in the time domain.

The real frequency f (and ω ≡ 2πf) are restricted to the Fourier transform of

noncausal functions. These model variables are shown in Fig. 1 in the context of a

single section of a transmission line.

Fig. 1. Transmission line model for a section of the cochlea of length ∆x. The series-
impedance Zs(x, s)∆x limits fluid translational volume velocity U(x, f), while the shunt-

admittance Yb(x, s)∆x limits the basilar membrane volume velocity.

Scala impedance depends on fluid density ρ0 and cross-sectional area A(x).

Zs(x, s) = sρ0/As(x). (2)

BM velocity is proportional to the gradient of the scala volume velocity:

dU

dx
(x, f) = −Yb(x, s) · P (x, f) = b · Vb(x, f), (3)

where b is the effective BM width.

3. Wave variables

The wave propagation function κ(x, s) and the characteristic impedance z0(x, s) are

determined entirely by the medium, and therefore only depend on the per unit

length series impedance Z(x, s) and shunt admittance Yb(x, s) [5]:

κ(x, s) ≡
√

Zs(x, s) · Yb(x, s) (4)
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z0(x, s) ≡
√

Zs(x, s)/Yb(x, s). (5)

The pressure wave variables P+ and P− are defined by
[

P+

P−

]
≡

1

2

[
1 z0

1 −z0

] [
P

U

]
(6)

We invert Eq. 6
[

P

U

]
=

[
1 1

y0 −y0

] [
P+

P−

]
, (7)

where y0 = 1/z0, and substitute Eq. 7 into Eq. 1:

d

dx

[
P+

P−

]
= −

1

2

[
y0Zs + z0Yb + z0y

′ −y0Zs + z0Yb − z0y
′

y0Zs − z0Yb − z0y
′ −y0Zs − z0Yb + z0y

′

] [
P+

P−

]
. (8)

In this equation y′

0 = dy0/dx. The equivalence of y0Zs = z0Yb = κ allows Eq. 8 to

be written as

d

dx

[
P+

P−

]
=

[
−κ + ε −ε

−ε κ + ε

] [
P+

P−

]
(9)

with

ε(x, f) ≡
1

2

d

dx
ln z0(x, s). (10)

Note that when z0(x, s) is independent of x, ε is equal to zero, which decouples

P+(x, f) and P−(x, f) in Eq. 9. When z0(x, s) varies slowly with x, |ε/κ| is small,

which may be exploited to obtain approximate model solutions.

Figure 2 shows examples of P+ and P− that demonstrate the importance of

BM roughness in generating retrograde waves. Model parameters were selected to

maintain nearly uniform characteristic impedance by making the scala area decrease

with x at the same rate as BM stiffness [4]. The “tall broad peaks” of the BM exci-

tation patterns were created by specifying a negative damping region at a location

just basal to the tonotopic place. The negative damping was sufficient to boost the

tip-to-tail ratio of the BM excitation patterns by about 60 dB. The model results

shown in Fig. 2 were obtained by finite-difference solution of Eq. 1 and are called

exact to contrast them with approximate results described below.

4. Approximate wave variables

The top row of Eq. 9 provides a differential equation for P+ coupled to P−

d

dx
P+ = (ε − κ) P+ − εP−. (11)

When y0(x, s) varies slowly with x, we can obtain an approximate equation for

P+ that is independent of P− by assuming that |(κ + ε) P+| ≫ |εP−|. With this

approximation, Eq. 11 reduces to

d

dx
P̃+ = (ε − κ) P̃+ (12)
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Fig. 2. Forward-traveling (solid) and retrograde (dashed) pressure components for the approxi-
mate model. The magnitude and phase are shown relative to pressure at the stapes. The results

on the left side are for smooth BM impedance. The results on the right side are for rough BM
impedance. The arrow indicates the phase at the characteristic place.

which can be integrated to obtain

P̃+(x, f) = P+(0, f) · exp

[∫
x

0

ε(x1, f) − κ(x1, f)dx1

]
, (13)

giving an approximate expression for P+. Surprisingly this expression is the WKB

approximation for the forward-traveling pressure wave [3,6,7].

The bottom row of Eq. 9 gives us a differential equation for P− that is coupled

to P+,

d

dx
P− = (κ + ε) P− − εP+. (14)

No further approximations are needed to obtain a solution for the retrograde wave.

Substitute Eq. 13 into Eq. 14 to obtain

d

dx
P̃− − (κ + ε) P̃− = −εP+(0, f) · exp

[
−

∫
x

0

(κ − ε) dx1

]
. (15)

The integration of this equation requires a boundary condition. If we assume that

P̃−(L, f) ≈ 0, we obtain

P̃−(x, f) = P+(0, f) · exp

[∫
x

0

(κ + ε) dx1

]
·

∫
L

x

ε exp

[
−2

∫
x2

0

κdx3

]
dx2, (16)

where x2 and x3 are additional integration variables for x. The sum of Eqs. 13 and

16 provides an approximate solution for the total pressure P̃ (x, f). The accuracy of

this approximation is demonstrated in Fig 3 by comparing exact and approximate

solutions of peak pressure (at the characteristic place) relative to stapes pressure

for versions of the cochlear model with smooth and rough BM. The exact solutions

required about 20 times longer to compute.
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Fig. 3. Peak pressure (re stapes pressure) as a function of frequency. The peak pres-
sure is defined as the maximum pressure magnitude over the entire length of the BM
at each frequency. The four curves represent different model conditions: (1) exact-smooth
(thick dashed); (2) exact-rough (thick solid); (3) approximate-smooth (thin dashed); (4)
approximate-rough (thin solid). The approximate results (thin) are barely visible in this
figure because they are covered by the exact results (thick).

We use Eqs. 13 and 16 to write an approximate equation for reflectance

R̃(x, f) = exp

[
2

∫
x

0

κ(x1)dx1

]
·

∫
L

x

ε(x2) exp

[
−2

∫
x2

0

κ(x3)dx3

]
dx2, (17)

which at the stapes reduces to

R̃(0, f) =

∫
L

0

ε(x2) exp

[
−2

∫
x2

0

κ(x3)dx3

]
dx2. (18)

Comparison between exact and approximate reflectance (not shown) demonstrate

excellent agreement.

5. Discussion

Figure 2 shows exact model results for forward-traveling pressure P+, and retrograde

pressure P−, at one frequency. The results on the left of Fig. 2 are for a smooth

BM stiffness. The relatively small P− level at the stapes indicates that reflection

at the tonotopic place is insignificant. The results on the right are for a rough BM

stiffness. The rough stiffness had a small, random increase added to the smooth

stiffness at each place along the BM. The random stiffness increase was uniformly

distributed between 0 and 0.001%. This small amount of roughness was sufficient

to produce significant reflection of the forward-traveling wave in the vicinity of the

tonotopic place. The positive slope of the phase of the P− component indicates that

retrograde energy is being propagated. Another interesting feature demonstated by

the cochlear model results in Fig. 2 is that the round trip delay of an SFOAE may

be less than the twice forward delay to the characteristic place.

In Fig. 3, we see that the pressure difference between the smooth and rough

models (i.e., the peak pressure fine structure) is the same for the exact and approx-
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imate results. In other words, the fine structure of the approximate pressure is the

same as the fine structure of the exact pressure. Model peak-pressure fine structure

represents threshold fine-structure rather than SFOAE fine-structure [8].

In Eq. 18, the accumulated phase of the incident wave P̃+ at location x comes

primarily from the integral of κ. In Eq. 18, note that the contribution to the stapes

reflectance R̃ of the retrograde wave from any location x has twice the phase accu-

mulation of the incident wave to that location. This doubling of phase is consistent

with the mechanism of reflection being place-fixed. Experimental observations of

OAE phase as a function of frequency suggest that some types of emissions are

generated by a place-fixed mechanism [9].

6. Conclusions

The wave variable decomposition traditionally applied to uniform transmission lines

may be extended to the case of nonuniform transmission lines, which may be used

to represent one-dimensional models of cochlear mechanics. When the character-

istic impedance z0 varies slowly, the equations for P̃+, P̃− and R̃ provide useful

approximations for solutions of cochlear models with “tall broad peaks.”
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